5.2L Solving Quadratic Equations Using the Quadratic Formula to Find Real Solutions

Describe a situation where you would HAVE to use the quadratic formula to solve a quadratic equation if If the quadratic equation does not factor, the voots are either inational or imaginary

#2-7: Determine a, b, and c and then solve using the quadratic formula. Remember to show ALL work.

$$2x^2 - 5x - 3 = 0$$

$$X = \underbrace{5 \pm \sqrt{25 - 4(2)(-3)}}_{4}$$

$$Y = \underbrace{5 \pm \sqrt{49}}_{4} / \underbrace{\frac{5 + 7}{4}}_{4} X = 3$$
or
$$\underbrace{5 - 7}_{4} X = \frac{-1}{2}$$

3.
$$x^2 - 7x + 9 = 0$$

$$X = 7 \pm \sqrt{(-7)^2 - 4(1)(9)}$$

$$X = 7 \pm \sqrt{13}$$

Could you have solved by factoring? Explain.

Could you have solved by factoring? Explain.

$$\int_{X=-\frac{1}{2}}^{(2\times +1)} (x-3) = 0 \left(\frac{49}{\text{perfect square}} \right)$$

$$\chi = -\frac{1}{2} \text{ or } \chi = 3$$

Could you have solved by factoring? Explain:

4.
$$5x^2 + 3x = 1$$

a: 5 b: 3 c:
$$-1$$

$$X = -3 \pm \sqrt{(3)^2 - 4(5)(-1)}$$

$$2(5)$$

$$X = -3 \pm \sqrt{29}$$

5.
$$x^2 + x - 1 = 0$$

a: | b: | c: -|
$$X = \frac{-1 \pm \sqrt{(1)^2 - 4(1)(-1)}}{2^{(1)}}$$

$$X = \frac{-1 \pm \sqrt{5}}{2^{(1)}}$$

Could you have solved by factoring? Explain:

Could you have solved by factoring? Explain.

No 7 29 is not a perfect square # No 5 is not a perfect square #

5.2L Solving Quadratic Equations Using the Quadratic Formula to Find Real Solutions

#2-7 (continued): Determine a, b, and c and then solve <u>using the quadratic formula</u>. Remember to show ALL work.

6.
$$9x^2 + 6x - 1 = 0$$

a: 9 b: 6 c:
$$-1$$
 $X = -6 \pm \sqrt{(6)^2 - 4(9)(-1)}$
 $2(9)$
 $X = -6 \pm \sqrt{72} = -6 \pm 6\sqrt{2}$
 $X = -1 \pm \sqrt{2}$

8 A cliff diver jumps up and away from

7.
$$2x^2 + 3x + 2 = 3$$

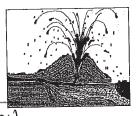
a:
$$\lambda$$
 b: 3 c: -1

$$\chi = -3 \pm \sqrt{(3)^{3} - 4(2)(-1)}$$

$$\lambda = -3 \pm \sqrt{17}$$

$$\mu$$

8. A cliff diver jumps up and away from the cliff as he jumps. His path can be modeled by the equation $h(t) = -16t^2 + 12t + 25$, where h is the height, in feet, of the diver at a specific time, t, in seconds. How long will it take for the diver to reach the water below? Solve using the quadratic formula. Round answers to the nearest hundredth. (Hint: When the diver hits the water, he is at a height of 0 ft.)


$$x = \frac{-12 \pm \sqrt{(12)^2 - 4(-16)(25)}}{2(16)}$$

$$x = \frac{-12 \pm \sqrt{1744}}{-32}$$

$$x \approx -12 \pm \sqrt{1744}$$

$$x \approx 1.68$$
The valence girder cope Pur Prai in Hawaii was formed in 1959 when a massive

- 9. The volcanic cinder cone Puu Puai in Hawaii was formed in 1959 when a massive "lava fountain" erupted at Kilauea Iki Crater, shooting lava hundreds of feet into the air. When the eruption was most intense, the height h (in feet) of the lava t seconds after being ejected from the ground could be modeled by $h(t) = -16t^2 + 352t$. Solve using any method you have learned. Round your answers to the nearest hundredth.
 - a) How long was the lava in the air? $-16 \pm (t-32) = 0$ $\pm 20 = 120 = 0$

b) How long did it take the lava to reach its maximum height of 1936 feet?

$$-16t^{2} + 352t = 1936$$

$$-16t^{3} + 352t - 1936 = 0$$

$$a = -16 \quad b = 352 \quad c = -1936 \quad t = -352 \pm \sqrt{0}$$

$$\frac{-32}{15}$$

